傳統(tǒng)吊頂方式照明局限:照明功能受到燈源設計位置和安裝位置的限制,因此形同虛設;照明光源與室內裝修風格不和諧,無燈光設計理念。集成吊頂照明優(yōu)勢:在MSO模塊狀態(tài)下,照明燈可任意安置在房間任何位置,以達到您所希望的效果。光源集成現(xiàn)在LED的COB封裝,都是基于里基板的封裝基礎,就是在里基板上把N個芯片繼承集成在一起進行封裝,基板的襯底下面是銅箔,銅箔只能很好的通電光源集成

其中P(T)為輻射能量,σ為斯特藩—玻耳茲曼常量,ε為發(fā)射率,紅外測溫的精確與待測材料的發(fā)射率密切相關,由于
COB光源表面的大部分材料發(fā)射率是未知的,為了精準測溫,可將光源放置在恒溫加熱臺上,待光源加熱到一個已知溫度處于熱平衡狀態(tài)后,用紅外熱成像儀測量物體表面溫度,再調整材料的發(fā)射率,使其溫度顯示為正確溫度。,不能做很好的光學處理.MCOB和傳統(tǒng)的不同,MCOB技術是芯片直接放在光學的杯子里面的,是根據(jù)光學做出來的,不僅是一個杯,要做好多個杯,LED芯片光是集中在芯片內部的,要讓光能更多的跑出來,需要非常多的角,就是說出光的口越多越好,效率就能提升.
此外,材料、制造設備的改進與COB的發(fā)展相輔相成,也加速了COB性價比的提升,顯現(xiàn)出其在商業(yè)照明領域的優(yōu)勢。

光源集成2015年,COB再次“火”了起來。如果說COB的前兩次發(fā)展推動了LED行業(yè),那么這次純粹就是為了與舊傳統(tǒng)“接軌”,本質上是一種倒退。誠然,COB是解決了“鬼影”問題,可是此前的發(fā)展證明COB在這方面是弊大于利的表2:樣品光電參數(shù)3、
COB光源的熱分布機理從上節(jié)的測溫實例中可知,
COB光源的膠體溫度最高可達125℃,而目前大部分芯片能承受的最高結溫不能超過125℃,很多燈具廠商認為發(fā)光面的溫度超過125℃,芯片的溫度應該會更高,繼而擔憂
COB光源的可靠性。。雖然燈珠性能的大幅提升為COB封裝創(chuàng)造了良好的技術基礎,使其終于滿足了市場的應用需求。這一切看上去很美好,但是COB產品形態(tài)的底層邏輯問題,使得再好的技術也彌補不了自身缺陷。而且正是基于良好技術在客觀上的誘使,導致對LED特性不熟悉的設計者在錯誤的道路上越滾越遠。

光源集成三、COB缺點—散熱、發(fā)光效率和眩光1、對COB來說,一般9WCOB尺寸是一個直徑大約為10mm的圓形,這決定了它只能在這個面積內直接作用于發(fā)熱源,至于面積以外的范圍就僅作為散熱的輔助光源集成
在市場上,企業(yè)和商家選取COB光源是根據(jù)自身的燈具設定光效下限,再談價格。光效低,價格高,都不行。
。而同樣9W的SMD,基板直徑一般在100mm左右。對散熱來講,低發(fā)熱量、大面積散熱的情形要遠好于高發(fā)熱、小面積散熱的情形。